[image:] (
UNIVERSITY OF SCIENCE &TECHNOLEGY
FACUALTY OF ENGNEERING
BIOMEDICAL DEPARTMENT
)
Microcontroller (1) Lab Manual

[image:]

 Prepared By:
Eng: Mohsen Ali AL-awami
Supervisered By:
Dr: Fadel AL-aqawa
2010-2011

LAB Expeirment (2)
· Main Topics:
· Jump ,Loop and Call instructions
· Assembely Arthimatics and Logic Operations

· Learning Objectives/Tasks:
 Upon Completion this experiment ,you will be able to :
· Code 8051 assembly language instruction using loops
· Code 8051 assembly language conditional jump instructions
· Explain condition that determine each conditional jump instruction
· Code 8051 subroutines
· Describe precautions in using the stack in subroutines
· Define the range of numbers possible in 8051 unsigned data
· Code addition and subtraction instructions for unsigned data
· Define the range of numbers possible in 8051 signed data
· Code addition and subtraction instructions for signed data
· Explain carry and overflow problems and their corrections
· Define the truth table for logic function AND,OR and XOR
· Code 8051 assembly language logic function instructions

Section 1: Loop and jump instructions
Repeating a sequence of instructions a certain number of times are called a LOOP,
The loop is one of the most widely used actions is performed by the instraction
[‘’ DJNZ reg, lable ‘’].
In this instruction, the register is decremented, if not zero, it jump to target address referred to by the label.
 (
Write a

program to
(a)
 Clear
 ACC
(b)
 Add
 3 to accumulator ten times
Solution:
 Mov A,
#0 ;a=0 clear ACC
 Mov R2,
#10 ; load counter r2=10
AGAIN: ADD A,#03 ; add 03 to acc
 Djnz R2,

AGAIN ;repeat untel r2=0 (10 times)

Mov R5,
A ; save A in R5

)Example 1:

Example 2:
 (
What is maximum number of
times that
 the loop in last example can be
repeated?

Solution:
Since the
 holds the count and R2 ia an 8-bites
register, it
 can
be hold
 maximum of FFH
(256 in decimal
times)

)

Loop inside a loop:
As shown in Example 2 the maximum number of count is 256 , what happens if we want to repeat an action more times than 256?
To do that, we use loop in side loop which is called a nested loop

Example 3:
 (
Write a program to
load the accumulator with the value
55H
complement
 the ACC 700 times
Solution:
;
Since
 700 is larger than 255 (the maximum capacity of any
register), so
 we will
use two
 registers to hold account.
 Mov A,#55h ; A=55
 Mov R3,#10 ; r3=10
 NEXT : Mov R2,#70 ; r2=70
 AGAIN: CPL A ;compelement A
 DJNZ R2 ,

AGAIN ;repeat it 70 times (inner loop)
 DJNZ R3 ,

NEXT

)

· Other Conditional Jumps
Conditional jumps for the 8051 are summerized in the next table:
Such as JZ (jump if A =0)
 JC (jump if carry =1)

	
	 instraction
	 Action

	JZ
	 Jump if a=0

	JNZ
	Jump if a not= 0

	DJNZ
	Decrement and Jump if a not=0

	CJNE A,BYTE
	Jump if a not= byte

	CJNE REG,#DATA
	Jump if a not= #data

	JC
	Jump if carry=1

	JNC
	Jump if carry=0

	JB
	Jump if bit=1

	JNB
	Jump if bit=0

	JBC
	Jump if bit=1 and clear bit

All conditional jumps are short jumps:
The address of the target must within -128 to +127 bytes of the contents of PC

Example 4:
 (
Write a
program to

determine if
 R5
contains the
 value 0 .if
so,

put 55H in
 it.
Solution:
Mov A,R5 ;copy R5 to A
JNZ NEXT ;jump if A is not zero
Mov R5,#55H
NEXT: …………………………
)

· JNC(jump if no carry, jumps if cy=0):
· In executing ‘’JNC’’ ,the processor looks at the carry flag to see if it raised (cy=1).if it is not ,the CPU starts to fetch and execute instructions from the address of the label .if the carry =1 ,it will not it will execute the next instraction below JNC.
It need to be noted that there is also ‘’JC lable ’’ instruction .in the jc instruction, if cy=1 it jumps to the target address.

Example 5:
 (
Find the sum of the values
79H,F5H
and
E2H
.put the sum in the registers R0(low byte)and R5(high byte).
Solution:
 Mov A,#0 ; clear A (A=0)
 Mov R5,A ; clear R5
 ADD A,#79H ; A=0+79H=79H
 JNC N1 ; if no carry ,add next number
 INC R5 ;if cy=1,increment R5
N1: ADD A,#0F5H ; A=79+F5=6E
 JNC N2 ; jump if cy=0
 INC R5 ; if cy=1 ,then incerement R5
N2 : ADD A,#0E2H ; A=6E+E2=50 and CY=1
 JNC over ; jump if cy=0
 INC R5 ; if cy=1 ,then incerement R5
OVER: mov R0,A ;Now R0=50h , and R5 =02 SS

)

· The unconditional jump is a jump in which control is transferred unconditionally to the target location
· LJMP (long jump)
· 3-byte instruction
· First byte is the opcode
· Second and third bytes represent the 16-bit
 target address
 – Any memory location from 0000 to FFFFH
· SJMP (short jump)
· 2-byte instruction
· First byte is the opcode
· Second byte is the relative target address
 – 00 to FFH (forward +127 and backward
 -128 bytes from the current PC).

Call instructions

· Call instruction is used to call subroutine
· Subroutines are often used to perform tasks
 that need to be performed frequently
· This makes a program more structured in
 addition to saving memory space
· LCALL (long call)
· 3-byte instruction
· First byte is the opcode
· Second and third bytes are used for address of target subroutine
– Subroutine is located anywhere within 64K byte address space
· ACALL (absolute call)
· 2-byte instruction
· 11 bits are used for address within 2K-byte range

· When a subroutine is called, control is transferred to that subroutine, the processor
· Saves on the stack the the address of the instruction immediately below the LCALL
· Begins to fetch instructions form the new location
· After finishing execution of the subroutine
· The instruction RET transfers control back to the calle
· Every subroutine needs RET as the last instruction

Example 6:
 (
 ORG 0
BACK: MOV A,#55H ;load A with 55H
 MOV P1,A ;send 55H to port 1
LCALL DELAY ;time delay
 MOV A,#0AAH ;load A with AA (in hex)
 MOV P1,A ;send AAH to port 1
LCALL DELAY
SJMP BACK ;keep doing this indefinitely
;---------- this is delay subroutine ------------
 ORG 300H ;put DELAY at address 300H
DELAY:MOV R5,#0FFH ;R5=255 (FF in hex), counter
AGAIN:DJNZ R5,AGAIN ;stay here until R5 become 0
 RET
 END
)

 (
001 0000 ORG 0
002 0000 7455 BACK: MOV A,#55H

;load A with 55H
003 0002 F590 MOV P1,A

;send 55H to p1
004 0004 120300

LCALL DELAY

;time delay
005 0007 74AA

MOV A,#0AAH

;load A with AAH
006 0009 F590

MOV P1,A

;send AAH to p1
007 000B 120300

LCALL DELAY
008 000E 80F0

SJMP BACK

;keep doing this
009 0010
010 0010 ;-------this is the delay subroutine------
011 0300

ORG 300H
012 0300

DELAY:
013 0300 7DFF

MOV R5,#0FFH

;R5=255
014 0302 DDFE AGAIN: DJNZ R5,AGAIN

;stay here
015 0304 22

RET

;return to caller
016 0305

END

;end of asm file
)

	0A
	

	09
	00

	08
	07

· Stack fram after the first LCALL
 (
Low byte goes first then high byte
)08

 SP (stack pointer) = 09

· The use of ACALL instead of LCALL
can save a number of bytes of program ROM space .

ARITHMETIC & LOGIC
INSTRUCTIONS AND
PROGRAMS

· Assembely Arthimatics Operations:
· Addition of unsigned numbers
· ADD A,source ;A = A + source
· The instruction ADD is used to add two operands
· Destination operand is always in register A
· Source operand can be a register, immediate data, or in memory
· Memory-to-memory arithmetic operations are never .
Example 1:
 (
Show how the flag register is affected by the following instruction.
 MOV A,#0F5H ;A=F5 hex
 ADD A,#0BH ;A=F5+0B=00
Solution:
 F5H 1111 0101
 + 0BH + 0000 1011
 -------- -----------
 100H 0000 0000
)

· When adding two 16-bit data operands,the propagation of a carry from lower byte to higher byte is concerned.
Example 2:

 1
 3C E7
 + 3B 8D

 78 74

 (
Write a program to add two 16-bit numbers. Place the sum in R7 and
R6; R6 should have the lower byte.
Solution:
 CLR C ;make CY=0
 MOV A, #0E7H ;load the low byte now A=E7H
 ADD A, #8DH ;add the low byte
 MOV R6, A ;save the low byte sum in R6
 MOV A, #3CH ;load the high byte
 ADDC A, #3BH ;add with the carry
 MOV R7, A ;save the high byte sum
)	

· The binary representation of the digits 0 to 9 is called BCD (Binary Coded Decimal)
· Unpacked BCD
In unpacked BCD, the lower 4 bits of the number represent the BCD number, and the rest of the bits are 0 .
Ex. 00001001 and 00000101 are unpacked BCD for 9 and 5.
· Packed BCD
In packed BCD, a single byte has two BCD number in it, one in the lower 4 bits, and one in the upper 4 bits .
Ex. 0101 1001 is packed BCD for 59H.
· Adding two BCD numbers must give a BCD result.
Example 2:
 (
 MOV A, #17H
 ADD A, #28H
The result above should have been 17 + 28 = 45 (0100 0101).
To correct this problem, the programmer must add 6 (0110) to the
low digit: 3F + 06 = 45H.
)

· DA A ;decimal adjust for addition
· The DA instruction is provided to correct the aforementioned problem associated with BCD addition
· The DA instruction will add 6 to the lowe nibble or higher nibble if need .

Example 3 :
 (

MOV A,#47H

;A=47H first BCD operand

MOV B,#25H

;B=25H second BCD operand

ADD A,B

;hex(binary) addition(A=6CH)

DA A

;adjust for BCD addition

(A=72H)
The “DA” instruction works only on A. In other word, while the source
can be an operand of any addressing mode, the destination must be in
register A in order for DA to work.
)

· Subtraction of unsigned numbers :
· In many microprocessor there are two different instructions for subtraction: SUB and SUBB (subtract with borrow)
· In the 8051 we have only SUBB
· The 8051 uses adder circuitry to perform the subtraction
 SUBB A,source ;A = A – source – CY

To make SUB out of SUBB, we have to make CY=0 prior to the execution of the instruction
· Notice that we use the CY flag for the borrow
· SUBB when CY = 0
· 1. Take the 2’s complement of the subtrahend (source operand)
· 2. Add it to the minuend (A)
· 3. Invert the carry

 (

CLR C

MOV A,#4C

 ;load A with value 4CH

SUBB A,#6EH

;subtract 6E from A

JNC NEXT

;if CY=0 jump to NEXT

CPL A

;if CY=1, take 1’s complement

INC A

;and increment to get 2’
s comp
NEXT: MOV R1,A

;save A in R1
Solution:

4C

0100 1100

0100

1100
-

6E

0110 1110

1001

0010
 ---- ----- -----

-22

01101 1110
)Example 4:

· SUBB when CY = 1
· This instruction is used for multi-byte numbers and will take care of the borrow of the lower operand .

Example 5:
 (

 CLR C
 MOV A,#62H ;A=62H
 SUBB A,#96H ;62H-96H=CCH with CY=1
 MOV R7,A ;save the result
 MOV A,#27H ;A=27H
 SUBB A,#12H ;27H-12H-1=14H
 MOV R6,A ;save the result
Solution:
We have 2762H - 1296H = 14CCH.
)

SIGNED ARITHMETIC INSTRUCTIONS
(Signed 8-bit Operands)
· D7 (MSB) is the sign and D0 to D6 are the magnitude of the number
· If D7=0, the operand is positive, and if D7=1, it is negative
· Positive numbers are 0 to +127
· Negative number representation (2’s complement)
1. Write the magnitude of the number in 8-bit binary (no sign)
2. Invert each bit
3. Add 1 to it.
	D7
	D6
	D5
	D4
	D3
	D2
	D1
	D0

 Sign Magnitude
 (
Show how the 8051 would represent -34H
Solution:
1.
0011 0100 34H given in binary
2.
1100 1011 invert each bit
3.
1100 1100 add 1 (which is CC in hex)
Signed number representation of -34 in 2’s complement is CCH
)

SIGNED ARITHMETIC INSTRUCTIONS
 (Overflow Problem)
· If the result of an operation on signed numbers is too large for the register.
· An overflow has occurred and the programmer must be noticed.

 (
Examine the following code and analyze the result.

MOV A,#+96

;A=0110 0000 (A=60H)

MOV R1,#+70

;R1=0100 0110(R1=46H)

ADD A,R1

;A=1010 0110

;A=A6H=-90,INVALID
Solution:

+96

0110 0000
+

+70

0100 0110
 ----- -------------
+

166

1010 0110

and OV =1
According to the CPU, the result is -90, which is wrong. The CPU
sets OV=1 to indicate the overflow
)

SIGNED ARITHMETIC INSTRUCTIONS
(2's Complement)
· To make the 2’s complement of a number
 (

CPL A

;1’s complement (invert)

ADD A,#1

;add 1 to make 2’s comp.
)

	
LOGIC AND COMPARE INSTRUCTIONS
(1- AND LOGIC)
ANL destination,source ;dest = dest AND source
· This instruction will perform a logic AND on the two operands and place the result in the destination
· The destination is normally the accumulator
· The source operand can be a register, in memory, or immediate

Example 1:
 (
Show the results of the following.
 MOV A,#35H ;A = 35H
 ANL A,#0FH ;A = A AND 0FH

 35H 0 0 1 1 0 1 0 1
 0FH 0 0 0 0 1 1 1 1
= ------- -------- -----------
 05H 0 0 0 0 0 1 0 1
)

(2- OR LOGIC)
· ORL destination,source ;dest = dest OR source
The destination and source operands are ORed and the result is placed in the destination .

· The destination is normally the accumulator
· The source operand can be a register, in memory, or immediate .

	

Example 2:
 (
Show the results of the following.
 MOV A,#04H ;A = 04
 ORL A,#68H ;A = 6C
 04H 0 0 0 0 0 1 0 0
 68H 0 1 1 0 1 0 0 0
 =----- --------- ---------
 6CH 0 1 1 0 1 1 0 0
)

(3- XOR)
XRL destination, source ;dest = dest XOR source
· This instruction will perform XOR operation on the two operands and
place the result in the destination
· The destination is normally the accumulator
· The source operand can be a register, in memory, or immediate .
 (
Show the results of the following.
 MOV A,#54H
 XRL A,#78H

 54H 0 1 0 1 0 1 0 0
 78H 0 1 1 1 1 0 0 0
= ------ -------- ----------
 2CH 0 0 1 0 1 1 0 0
)Example 3:

4- Compare Instruction
CJNE destination,source,rel. addr.
· The actions of comparing and jumping are combined into a single instruction called CJNE (compare and jump if not equal)
· The CJNE instruction compares two operands, and jumps if they are not equal.
· The destination operand can be in the accumulator or in one of the Rn registers The source operand can be in a register, in memory, or immediate The operands themselves remain unchanged.
· It changes the CY flag to indicate if the destination operand is larger or smaller.

Example 4:
 (

CJNE R5,#80,NOT_EQUAL

;check R5 for 80

...
 ;R5 = 80
NOT_EQUAL:

JNC NEXT

;jump if R5 > 80

...

;R5 < 80
NEXT:

...
)

· Compare Carry Flag
· destination ≥ source CY = 0
· destination < source CY = 1

· The compare instruction is really a Subtraction.

Rotating Right and Left

· RR A ;rotate right A
· In rotate right
· The 8 bits of the accumulator are rotated right one bit, and
· Bit D0 exits from the LSB and enters into MSB, D7

 (
MSB LSB
)
	
 (

MOV A,#36H

;A = 0011 0110

RR A

;A = 0001 1011

RR A

;A = 1000 1101

RR A

;A = 1100 0110

RR A

;A = 0110 0011
)

t’)
· RL A ;rotate left A
· In rotate left
· The 8 bits of the accumulator are rotate left one bit, and
· Bit D7 exits from the MSB and enters into LSB, D0
 (
MSB LSB
)
	

 (

MOV A,#72H ;A = 0111 0010
 RL A ;A = 1110 0100
 RL A ;A = 1100 1001
)

	

Rotating through Carry

 RRC A ;rotate right through carry
· In RRC A
· Bits are rotated from left to right
· They exit the LSB to the carry flag, and the carry flag enters the MSB.

 (
MSB LSB
)	CY

 (

CLR C ;make CY = 0
 MOV A,#26H ;A = 0010 0110
 RRC A ;A = 0001 0011 CY = 0
 RRC A ;A = 0000 1001 CY = 1
 RRC A ;A = 1000 0100 CY = 1
)

 RLC A ;rotate left through carry
· In RLC A
· Bits are shifted from right to left.
· They exit the MSB and enter the carry flag,
 and the carry flag enters the LSB.
 (
MSB LSB
)

 CY

 (
Write a program that finds the number of 1s in a given byte.

MOV R1,#0

MOV R7,#8

;count=08

MOV A,#97H
AGAIN: RLC A

JNC NEXT

;check for CY

INC R1

;if CY=1 add to count
NEXT:

 DJNZ R7,AGAIN
)

20

image1.jpeg

image2.jpeg

