[image:] (
UNIVERSITY OF SCIENCE &TECHNOLEGY
FACUALTY OF ENGNEERING
BIOMEDICAL DEPARTMENT
)

Microcontroller (1) Lab Manual

Part (3)

[image:] Prepared By:
Eng: Mohsen Ali AL-awami
Supervise red By:
Dr: Fadel AL-aqawa
2010-2011
 LAB Expeirment (3)
· Main Topics:
· Switch Debouncing (port as I/O PROGRAMMER)
· TIMER / Counter PROGRAMMING

· Learning Objectives/Tasks:
 Upon Compliation this expeirment ,you will be able to :

· Using the port pins as input throught the switchs
· List the timers mode of the 8051 and their associated registers.
· Describe the various modes of the 8051 timers
· Programs the 8051 timers to generate time delays
· Programs the 8051 counters as event counters

Switch Debouncing (port as I/O PROGRAMMER)

There are times that we need to access only 1 or 2 bits of the port instead of 8 bites ,a powerful features of the 8051 I/O ports is their capability to access individual bits of the port without altering the rest of the bits in the port.

Example 1 :
 (
Back : CPL P1.2 ;complement p1.2 only
 ACALL DELAY
 SJMP BACK
;another variation of the above program follows
AGAIN : SETB P1.2 ;change only p1.2=high
 ACALL DELAY
 CLR P1.2 ;change only p1.2=low
 ACALL DELAY
 SJMP AGAIN
)The following code toggles the bit p1.2 continuously .

 (
Write a program to perform the following :
Keep mentoring the p1.2 bit until it become high
When p1.2 becomes high ,write value 45h to port 0
Send a high –to- low pulse to p2.3
)Example 2:

 (
Solution :
 SETB P1.2 ;

make switch p1.2 an input switch
 MOV A,
#
 45H
 ; A=45h
AGAIN : JNB P1.2
,
AGAIN ;get out when p1.2 =1
 Mov P0,A ;mov A to P0
 SETB P2.3 ;make P2.3 high
 CLR P2.3 ;make p2.3 low for H-TO-L
In this program, instruction (JNB P1.2 AGAIN) stays in the loop as long as p1.2 is low
,
When p1.2 becomes high ,it gets out of the loop and write the value of 45H in to port 0
 a
nd creat H--TO –L pluse by the sequence of the instructions SETB and CLR .
)

	
PROGRAMMING TIMERS
· The 8051 has two timers, they can be used either as:
· Timers to generate a time delay or as
· Event counters to count events happening
 outside the microcontroller
· Both Timer 0 and Timer 1 are 16 bits
wide
· Since 8051 has an 8-bit architecture, each 16-bits timer is accessed as two separate registers of low byte and high byte.

Timer 0 & 1 Registers

· Accessed as low byte and high byte
· The low byte register is called TL0/TL1
 And The high byte register is called TH0/TH1
· Accessed like any other register
· MOV TL0,#4FH
· MOV R5,TH0

	D15
	D14
	D13
	D12
	D11
	D10
	D9
	D8
	D7
	D6
	D5
	D4
	D3
	D2
	D1
	D0

--- ------------------------------
 TH0 TL0

	D15
	D14
	D13
	D12
	D11
	D10
	D9
	D8
	D7
	D6
	D5
	D4
	D3
	D2
	D1
	D0

--- ------------------------------
 TH1 TL1

TMOD Register

· Both timers 0 and 1 use the same register, called TMOD (timer mode),set the various timer operation modes
TMOD is a 8-bit register
· The lower 4 bits are for Timer 0
· The upper 4 bits are for Timer 1
· In each case,
· The lower 2 bits are used to set the timer mode
· The upper 2 bits to specify the operation

	GATE
	C/T
	M1
	M0

	TIMER1

	GATE
	C/T
	M1
	M0

	TIMER0

	M1
	M0
	MODE
	OPERATING MODE

	0
	0
	0
	
13-bit timer mode 8-bit timer/counter THx with TLx as 5-bit prescaler.

	0
	1
	1
	16-bit timer mode 16-bit timer/counter THx and TLx are cascaded; there is no prescaler.

	1
	0
	2
	8-bit auto reload 8-bit auto reload timer/counter; THx holds a value which is to be reloaded TLx each time
it overflows.

	1
	1
	3
	Split timer mode

GATE: Gating control when set. Timer/counter is enable only while the INTx pin is high and the TRx control pin is set, When cleared the timer is enabled whenever the TRx control bit is set.

C/T: Timer or counter selected, Cleared for timer operation (input from internal system clock),Set for counter operation (input from Tx input pin).
 (
Example 3:
Indicate which mode and which timer are selected for each of the following.
(a) MOV TMOD, #01H (b) MOV TMOD, #20H (c) MOV TMOD, #12H
Solution:
We convert the value from hex to binary. From Figure 9-3 we have:
(a) TMOD = 00000001, mode 1 of timer 0 is selected.
(b) TMOD = 00100000, mode 2 of timer 1 is selected.
(c) TMOD = 00010010, mode 2 of timer 0, and mode 1 of timer 1 are
selected.
)

 (
Example 4:
Find the timer’s clock frequency and its period for various 8051-based system,
with the crystal frequency 11.0592 MHz when C/T bit of TMOD is 0.
)

 (
Solution:
1/12
×
11.0529 MHz = 921.6 MHz;
T = 1/921.6 kHz = 1.085 us
)

 (
% 12
) (
XTAL
OSCILLATOR
)

· Timers of 8051 do starting and stopping by either software or hardware control
· In using software to start and stop the timer where GATE=0
· 􀂃 The start and stop of the timer are controlled by way of software by the TR (timer start) bits TR0 and TR1
1. The SETB instruction starts it, and it is stopped by the CLR instruction
2. These instructions start and stop the timers as long as GATE=0 in the TMOD register
3. The hardware way of starting and stopping the timer by an external source is achieved by making GATE=1 in the TMOD register.
Example 5:
 (
Find the value for TMOD if we want to program timer 0 in mode 2,use 8051 XTAL for the clock source, and use instructions to start and stop the timer.
TMOD = 0000 0010
)

Mode 1 Programming
The following are the characteristics and operations of mode1:
1. It is a 16-bit timer; therefore, it allows value of 0000 to FFFFH to be loaded into the timer’s register TL and TH
2. After TH and TL are loaded with a 16-bit
initial value, the timer must be started This is done by SETB TR0 for timer 0 and SETB TR1 for timer 1
3. After the timer is started, it starts to count up It counts up until it reaches its limit of FFFFH.

 (
XTAL
OSCILLATOR
) (
% 12
)
 (
TF
) (
TL
) (
TH
)		
	
	TF goes high if Overfolw
 C/T =0 TR FFFF 0000 flag
3. When it rolls over from FFFFH to 0000, it sets high a flag bit called TF (timer flag)
– Each timer has its own timer flag: TF0 for
timer 0, and TF1 for timer 1
– This timer flag can be monitored
􀂃 When this timer flag is raised, one option would be to stop the timer with the instructions CLR TR0 or CLR TR1, for timer 0 and timer 1, respectively
4. After the timer reaches its limit and rolls over, in order to repeat the process
􀂃 TH and TL must be reloaded with the original value, and TF must be reloaded to 0.
To generate a time delay
1. Load the TMOD value register indicating which timer (timer 0 or timer 1) is to be used and which timer mode (0 or 1) is selected
2. Load registers TL and TH with initial count value
3. Start the timer
4. Keep monitoring the timer flag (TF) with the JNB TFx,target instruction to see if it is raised
􀂃 Get out of the loop when TF becomes high
5. Stop the timer
6. Clear the TF flag for the next round
7. Go back to Step 2 to load TH and TL
Again.

 (
Example 6:
In the following program, we create a square wave of 50% duty cycle (with
equal portions high and low) on the P1.5 bit. Timer 0 is used to generate the
time delay. Analyze the program
 MOV TMOD,#01
;Timer 0, mode 1(16-bit mode)
HERE: MOV TL0,#0F2H
;TL0=F2H, the low byte
 MOV TH0,#0FFH
;TH0=FFH, the high byte
 CPL P1.5 ;toggle P1.5
 ACALL DELAY
 SJMP HERE
In the above program notice the following step.
1. TMOD is loaded.
2. FFF2H is loaded into TH0-TL0.
3. P1.5 is toggled for the high and low portions of the pulse.
…
)

	

 (
Example 6: (cont’)
DELAY:
 SETB TR0 ;start the timer 0
AGAIN: JNB TF0,AGAIN ;monitor timer flag 0
 ;until it rolls over
 CLR TR0 ;stop timer 0
 CLR TF0 ;clear timer 0 flag
 RET
4. The DELAY subroutine using the timer is called.
5. In the DELAY subroutine, timer 0 is started by the
SETB TR0
instruction.
6. Timer 0 counts up with the passing of each clock, which is provided by the
crystal oscillator. As the timer counts up, it goes through the states of FFF3,
FFF4, FFF5, FFF6, FFF7, FFF8, FFF9, FFFA, FFFB, and so on until it
reaches FFFFH. One more clock rolls it to 0, raising the timer flag (TF0=1).
At that point, the JNB instruction falls through.

 FFF2

FFF3

FFF4
 ……..>>
FFFF

0000
 TF=0 TF=0 TF=0 TF=0 TF=1
7. Timer 0 is stopped by the instruction
CLR TR0
. The DELAY subroutine
ends, and the process is repeated.
Notice that to repeat the process, we must reload the TL and TH registers, and
start the process is repeated
)[image:][image:][image:]

 (
Example 7;
In Example 7
, calculate the frequency of the square wave generated
on pin P1.5.
Solution:
In the timer
delay calculation of Example 7
, we did not include the
overhead due to instruction in the loop. To get a more accurate timing,
we need to add clock cycles due to this instructions in the loop. To do
that, we use the machine cycle
, as
shown below.
Cycles
HERE:

MOV TL0,#0F2H

2

MOV TH0,#0FFH

2

CPL P1.5

1

ACALL DELAY

2

SJMP HERE

2
DELAY:

SETB TR0

1
AGAIN:

JNB TF0,AGAIN

14

CLR TR0

1

CLR TF0

1

RET

2
Total 28
T = 2
×
28
×
1.085 us = 60.76 us and F = 16458.2 Hz
)

 (
Example 8:
Find the delay generated by timer 0 in the following code, using both
of the Methods of Figure 9-4. Do not include the overhead due to
instruction.

CLR P2.3

;Clear P2.3

MOV TMOD,#01

;Timer 0, 16-bitmode
HERE:

MOV TL0,#3EH

;TL0=3Eh, the low byte

MOV TH0,#0B8H

;TH0=B8H, the high byte

SETB P2.3

;SET high timer 0

SETB TR0

;Start the timer 0
AGAIN:

JNB TF0,AGAIN

;Monitor timer flag 0

CLR TR0

;Stop the timer 0

CLR TF0

;Clear TF0 for next
 round

CLR P2.3
Solution:
(a) (FFFFH – B83E + 1) = 47C2H = 18370 in decimal and 18370
×
1.085 us = 19.93145 ms
(b) Since TH – TL = B83EH = 47166 (in decimal) we have 65536 –
47166 = 18370. This means that the timer counts from B38EH to
FFFF. This plus Rolling over to 0 goes through a total of 18370 clock
cycles, where each clock is 1.085 us in duration. Therefore, we have
18370
×
1.085 us = 19.93145 ms as the width of the pulse.
)

 (
Example 8:
The following program generates a square wave on P1.5 continuously
using timer 1 for a time delay. Find the frequency of the square
wave if XTAL = 11.0592 MHz. In your calculation do not
include the overhead due to Instructions in the loop.
 MOV TMOD,#10
;Timer 1, mod 1 (16-bitmode)
AGAIN: MOV TL1,#34H
;TL1=34H, low byte of timer
 MOV TH1,#76H
;TH1=76H, high byte timer
 SETB TR1
;start the timer 1
BACK: JNB TF1,BACK
;till timer rolls over
 CLR TR1
;stop the timer 1
 CPL P1.5
;comp. p1. to get hi, lo
 CLR TF1
;clear timer flag 1
 SJMP AGAIN
;is not auto-reload
Solution:
Since FFFFH – 7634H = 89CBH + 1 = 89CCH and 89CCH = 35276
clock count and 35276
×
1.085 us = 38.274 ms for half of the
square wave. The frequency = 13.064Hz.
Also notice that the high portion and low portion of the square wave
pulse are equal. In the above calculation, the overhead due to all
the instruction in the loop is not included.
)

 LAB Expeirment (4)
· Main Topics:
· LCD Pins Descriptions
· LCD Commands
· LCD Operations

· Learning Objectives/Tasks:
 Upon Compliation this expeirment ,you will be able to :

· List reasons that LCD are gaging wide-spread use,replacing LED’S
· Describe the function of the pins of atypical LCD
· List instruction command codes for programming an LCD
· Interface an LCD to the 8051
· Program an LCD by sending data or commands to it from 8051

· INTERFACING LCD TO 8051:
 8051 LCD
 (
P0.1
 P0.7
P2.0
P2.1
P2.3
) (
D0 Vcc
 Vee
D7 Vss
RS R/W E
) 5v
 10k pot
 								

· LCD Operation
LCD is finding widespread use replacing LEDs
􀂾 The declining prices of LCD
􀂾 The ability to display numbers, characters, and graphics
􀂾 Incorporation of a refreshing controller into the LCD, thereby relieving the CPU of the task of refreshing the LCD
􀂾 Ease of programming for characters and graphics.
LCD Pin
Descriptions
·
· LCD Pin Descriptions

Pin Descriptions for LCD:

	pin
	symbol
	I/O
	Descriptions

	1
	vss
	--
	Ground

	2
	vcc
	--
	+5V power supply

	3
	Vee
	--
	Power supply to control contrast

	4
	Rs
	I
	RS=0 to select command register,
RS=1 to select data register

	5
	r/w
	I
	R/W=0 for write,R/W=1 for read

	6
	E
	I/O
	Enable

	7
	DB0
	I/O
	The 8-bit data bus

	pin
	symbol
	I/O
	Descriptions

	8
	DB1
	I/O
	The 8-bit data bus

	9
	DB2
	I/O
	The 8-bit data bus

	10
	DB3
	I/O
	The 8-bit data bus

	11
	DB4
	I/O
	The 8-bit data bus

	12
	DB5
	I/O
	The 8-bit data bus

	13
	DB6
	I/O
	The 8-bit data bus

	14
	DB7
	I/O
	The 8-bit data bus

· LCD Command Codes:
	CODE(HEX)
	Command to LCD Instruction Register

	1
	Clear display screen

	2
	Return home

	4
	Decrement cursor (shift cursor to left)

	6
	Increment cursor (shift cursor to right)

	5
	Shift display right

	7
	Shift display left

	8
	Display off, cursor off

	A
	Display off, cursor on

	C
	Display on, cursor off

	CODE(HEX)
	Command to LCD Instruction Register

	E
	Display on, cursor blinking

	F
	Display on, cursor blinking

	10
	Shift cursor position to left

	14
	Shift cursor position to right

	18
	Shift the entire display to the left

	1C
	Shift the entire display to the right

	80
	Force cursor to beginning to 1st line

	C0
	Force cursor to beginning to 2nd line

	38
	2 lines and 5x7 matrix

· (
To send any of the commands to the LCD, make pin RS=0. For data,
make RS=1. Then send a high-to-low pulse to the E pin to enable the
internal latch of the LCD. This is shown in the code below.
;calls a time delay before sending next data/command
;P1.0-P1.7 are connected to LCD data pins D0-D7
;P2.0 is connected to RS pin of LCD
;P2.1 is connected to R/W pin of LCD
;P2.2 is connected to E pin of LCD
ORG
MOV A,
#38H

;INIT. LCD 2 LINES, 5X7 MATRIX
ACALL COMNWRT

;call command subroutine
ACALL DELAY

;give LCD some time
MOV A,
#0EH

;display on, cursor on
ACALL COMNWRT

;call command subroutine
ACALL DELAY

;give LCD some time
MOV A,
#01

;clear LCD
ACALL COMNWRT

;call command subroutine
) Sending Codes and Data to LCDs w/ Time Delay:

 (
ACALL DELAY ;give LCD some time
MOV A,
#06H
;shift cursor right
ACALL COMNWRT ;call command subroutine
ACALL DELAY ;give LCD some time
MOV A,
#84H
;cursor at line 1, pos. 4
ACALL COMNWRT ;call command subroutine
ACALL DELAY ;give LCD some time
MOV A,#’N’

;display letter N
ACALL DATAWRT

;call display subroutine
ACALL DELAY

;give LCD some time
MOV A,#’O’

;display letter O
ACALL DATAWRT

;call display subroutine
AGAIN: SJMP AGAIN

;stay here
COMNWRT:

;send command to LCD
MOV P1,A

;copy reg A to port 1
CLR P2.0

;RS=0 for command
CLR P2.1

;R/W=0 for write
SETB P2.2

;E=1 for high pulse
CLR P2.2

;E=0 for H-to-L pulse
RET
DATAWRT:

 ;write data to LCD
MOV P1,A

;copy reg A to port 1
CLR P2.0

;RS=0 for command
CLR P2.1

;R/W=0 for write
SETB P2.2

;E=1 for high pulse
CLR P2.2

;E=0 for H-to-L pulse
RET
DELAY: MOV R3,#50

;50 or higher for fast CPUs
HERE2: MOV R4,#255

;R4 = 255
HERE: DJNZ R4,HERE

;stay until R4 becomes 0
DJNZ R3,HERE2
RET
END
)

·

· Sending Codes and Data to LCDs w/ Busy Flag:
 (
;Check busy flag before sending data, command to LCD
;p1=data pin
;P2.0 connected to RS pin
;P2.1 connected to R/W pin
;P2.2 connected to E pin
ORG
MOV A,
#38H

;init. LCD 2 lines ,5x7 matrix
ACALL COMMAND

;issue command
MOV A,
#0EH

;LCD on, cursor on
ACALL COMMAND

;issue command
MOV A,
#01H

;clear LCD command
ACALL COMMAND

;issue command
MOV A,
#06H

;shift cursor right
ACALL COMMAND

;issue command
MOV A,
#86H

;cursor: line 1, pos. 6
ACALL COMMAND

;command subroutine
MOV A,#’N’

;display letter N
ACALL DATA_DISPLAY
MOV A,#’O’

;display letter O
ACALL DATA_DISPLAY
HERE:SJMP HERE

;STAY HERE
)

	

 (
COMMAND:
ACALL READY

;is LCD ready?
MOV P1,A

;issue command code
CLR P2.0

;RS=0 for command
CLR P2.1

;R/W=0 to write to LCD
SETB P2.2

;E=1 for H-to-L pulse
CLR P2.2

;E=0,latch in
RET
DATA_DISPLAY:
ACALL READY

;is LCD ready?
MOV P1,A

;issue data
SETB P2.0

 ;RS=1 for data
CLR P2.1

;R/W =0 to write to LCD
SETB P2.2

 ;E=1 for H-to-L pulse
CLR P2.2

;E=0,latch in
RET
READY:
SETB P1.7

;make P1.7 input port
CLR P2.0

;RS=0 access command reg
SETB P2.1

;R/W=1 read command reg

 ;read command reg and check busy flag
BACK:SETB P2.2

;E=1 for H-to-L pulse
CLR P2.2

;E=0 H-to-L pulse
JB P1.7,BACK

;stay until busy flag=0
RET
END
)
14

image1.jpeg

image2.emf

image3.jpeg

